

尜SLR

Technical Appendix 9.4: Carbon Balance Assessment

Ben Sca Redesign Wind Farm

Ben Sca Wind Farm Limited

Prepared by: SLR Consulting Limited 4/5 Lochside View, Edinburgh Park, Edinburgh, EH12 9DH

SLR Project No.: 405.064982.00001

14 March 2024

Revision: 3

Making Sustainability Happen

Basis of Report

This document has been prepared by SLR Consulting Limited (SLR) with reasonable skill, care and diligence, and taking account of the timescales and resources devoted to it by agreement with Ben Sca Wind Farm Limited (the Applicant) as part or all of the services it has been appointed by the Client to carry out. It is subject to the terms and conditions of that appointment.

SLR shall not be liable for the use of or reliance on any information, advice, recommendations and opinions in this document for any purpose by any person other than the Client. Reliance may be granted to a third party only in the event that SLR and the third party have executed a reliance agreement or collateral warranty.

Information reported herein may be based on the interpretation of public domain data collected by SLR, and/or information supplied by the Client and/or its other advisors and associates. These data have been accepted in good faith as being accurate and valid.

The copyright and intellectual property in all drawings, reports, specifications, bills of quantities, calculations and other information set out in this report remain vested in SLR unless the terms of appointment state otherwise.

This document may contain information of a specialised and/or highly technical nature and the Client is advised to seek clarification on any elements which may be unclear to it.

Information, advice, recommendations and opinions in this document should only be relied upon in the context of the whole document and any documents referenced explicitly herein and should then only be used within the context of the appointment.

Table of Contents

Basi	s of Report	i
1.0	Introduction	.1
2.0	Context	.2
3.0	Input Data	.3
4.0	Results	.4
5.0	Conclusions	.6
6.0	References	.7

1.0 Introduction

SLR has been commissioned by Ben Sca Wind Farm Limited (The Applicant) to calculate the carbon pay-back period for the proposed Ben Sca Redesign Wind Farm (the 'Proposed Development') using the Scottish Government Carbon Calculator Tool¹ in accordance with the associated guidance².

The Proposed Development is located approximately 2.5km southwest of Edinbane and 7km to the east of Dunvegan on the Isle of Skye. The Proposed Development would comprise of nine wind turbines with associated infrastructure including access tracks, crane hardstandings, borrow pits, substation and temporary construction compounds. Full details of the Proposed Development are provided in EIA Report **Chapter 1: Introduction and Project Description**.

The Carbon Calculator Tool has been developed by the Scottish Government to support the process of determining the carbon pay-back period for wind farm developments in Scotland. The carbon payback period is derived by comparing the carbon costs of wind farm developments (particularly during construction) with the carbon savings likely to be achieved through their operation.

The Carbon Calculator Tool v1.7.0 uses methods given in Nayak et al, 2008 (http://www.scotland.gov.uk/Publications/2008/06/25114657/0) and revised equations for GHG emissions (Nayak, D.R., Miller, D., Nolan, A., Smith, P. and Smith, J.U., 2010 & 2011, and Wind Farm and Carbon Savings – Technical Note v.2 2.10.0. Input Parameters).

To calculate the pay-back period, the Scottish Government's Carbon Calculator Tool considers the following carbon saving and carbon loss parameters, as shown in Annex 9.4A:

- Carbon emissions savings, based on emissions from different power sources;
- Loss of carbon due to production, transportation, erection, operation and decommissioning of the wind farm;
- Loss of carbon from backup power generation;
- Loss of carbon-fixing potential of peatland;
- Loss and/or saving of carbon stored in peatland (by peat removal or changes in drainage);
- Carbon saving due to improvement of habitat.; and
- Loss and/or saving of carbon-fixing potential as a result of forestry clearance.

¹ Scottish Government Wind Farm Developments on Peat Land: Carbon Calculator Tool v1.7.0 <u>https://informatics</u>.sepa.org.uk/CarbonCalculator/

² Calculating Carbon Savings from Wind Farms on Scottish Peatlands – A New Approach (Nayak et al., 2008; Nayak et al., 2010 and Smith et al., 2011)

2.0 Context

By 2030, the Scottish Government aims to have reduced greenhouse gas emissions by at least 75% compared to 1990 levels and generate 50% of Scotland's overall energy consumption from renewable sources, with aims to have decarbonised Scotland's energy system and economy completely by 2050.

Large scale wind farm development in Scotland has raised concerns about the reliability of methods used to calculate the time taken for these proposals to reduce greenhouse gas emissions, largely due to the potential siting of wind farms on peatland which represent large stores of carbon. The implication for carbon emissions is therefore a factor that should be included in the consideration of proposed wind farm development.

3.0 Input Data

The data inputs for the online calculator tool have been extracted from the sources listed below:

- Ben Sca Redesign Wind Farm EIAR Chapter 1: Introduction and Project Description.
- Ben Sca Redesign Wind Farm EIAR Chapter 6: Hydrology, Hydrogeology and Soils.
- Ben Sca Redesign Wind Farm EIAR Technical Appendix 6.1: Peat Management Plan.
- Ben Sca Redesign Wind Farm EIAR Technical Appendix 6.2: Peat Landslide Hazard Risk Assessment.

The calculation spreadsheet within the Carbon Calculator Tool (online version reference number MN3C-23RM-QLN1 v18) allows a range of data to be input in order to utilise expected, minimum and maximum values, where relevant and applicable. The input data is presented within Annex 9.4A of this report. However, if several parameters are varied together, this can have the effect of 'cancelling out' a single parameter change. For this reason, the approach for this assessment, has been to include 'maximum values' as those values which would result in the longest (maximum) payback period; and 'minimum values' as those value is based on the most realistic option for the Proposed Development.

4.0 Results

The model calculates carbon emissions savings and losses from the various aspects of the model; and also calculates a payback period based on the three counterfactual emission factors, coal-fired plant, normal grid mix and fossil fuel mix. The counterfactual emission factors are fixed within the calculator tool, the coal-fired and fossil fuel mix emission values are based on DUKES³ data for which the UK is annually updated. The grid mix emission factor is the list of emission factors used to report on 2022 greenhouse gas emissions as published by DECC⁴.

Table 4-1 presents the estimates of carbon dioxide (CO₂) emissions savings for the Proposed Development when compared against coal-fired, grid-mix and fossil fuel electricity generation.

Wind Farm CO ₂ emission saving over…	Exp.	Min.	Max.
coal-fired electricity generation (t CO ₂ /yr)	137,026	134,326	139,726
grid-mix of electricity generation (t CO ₂ /yr))	30,015	29,424	30,607
fossil fuel – mix of electricity generation (t CO ₂ /yr)	61,480	60,269	62,692
Energy output from Wind Farm over lifetime (MWh)	5,800,038	5,685,752	5,914,325

Table 4-1 Estimate of CO₂ Emission Savings

Table 4-2 and **Table 4-3** present the estimated losses and gains from the various aspects of the wind farm construction and operation. This shows that the improvement of degraded bogs will have a positive impact on carbon capture.

Table 4-2 Estimated CO₂ Losses

Total CO2 losses due to wind farm (tCO2 eq.)	Exp.	Min.	Max.
Losses due to turbine life (eg. manufacture, construction, decommissioning)	34,881	34,881	34,881
Losses due to backup	30,286	30,286	30,286
Losses due to reduced carbon fixing potential	636	248	953
Losses from soil organic matter	15,155	10,217	20,036
Losses due to Dissolved Organic Carbon (DOC) & Particulate Organic Carbon (POC) leaching	128	30	247
Losses due to felling forestry	34,178	31,915	36,227
Total losses of CO ₂	115,263	107,577	122,629

³ Department for Business, Energy & Industrial Strategy, Digest of UK Energy Statistics (DUKES)

⁴ https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2022

Table 4-3 Estimated CO₂ Gains

Total CO ₂ gains due to improvement of site (t CO ₂ eq.)	Exp.	Min.	Max.
Change in emissions due to improvement of degraded bogs ⁵	0	0	0
Change in emissions due to improvement of felled forestry	-6,206	-4,793	-7,659
Change in emissions due to restoration of peat from borrow pits	113	0	178
Change in emissions due to removal of drainage from foundations & hardstanding areas	-328	-234	-437
Total change in emissions due to improvements	-6,421	-5,027	-7,918

Table 4-4 demonstrates that the net emissions of CO_2 are estimated at 108,842 tonnes of CO_2 , with an estimated payback period of 1.8 years. Therefore, the Proposed Development will produce a reduction in emissions from the electricity grid of around 61,480 tonnes of CO_2 per year (this assumes that the wind farm replaces grid electricity generated from a fossil fuel mix).

A summary of the anticipated carbon emissions and carbon payback of the Proposed Development are provided below:

Table 4-4 CO₂ Emissions and Payback Time

Results	Exp.	Min.	Max.
Net emissions of CO ₂ (t CO _{2 eq}) (carbon losses minus carbon gains)	108,842	99,658	117,602
Carbon Payback Time			-
coal-fired electricity generation (years)	0.8	0.7	0.9
grid-mix of electricity generation (years)	3.6	3.3	4
fossil fuel – mix of electricity generation (years)	1.8	1.6	2
Ratio of CO₂ eq. emissions to power generation (g/kWh)	18.77	16.85	20.68

⁵ Included in the 'Change in emissions due to improvement of felled forestry' calculations.

5.0 Conclusions

The calculations of total CO_2 emission savings and payback time for the Proposed Development indicates that the overall payback period will be around 1.8 years when compared to the grid fuel mix of electricity generation. This means that the Proposed Development is anticipated to take around 1.8 years to repay the carbon exchange to the atmosphere (the CO_2 debt) through construction; the site would in effect be in a net gain situation following this time period and can then claim to contribute to national emissions reduction objectives thereafter for its remaining operational life.

6.0 References

Carbon Calculator Tool v1.7.0. Available at https://informatics.sepa.org.uk/CarbonCalculator/

Carbon Calculator Tool User Guidance. Available at https://informatics.sepa.org.uk/CarbonCalculator/assets/Carbon_calculator_User_Guidance.pdf

Calculating Carbon Savings from Wind Farms on Scottish Peatlands - A New Approach, Nayak et al; 2008 and 2010 and Smith et al; 2011. (http://www.gov.scot/Publications/2008/06/25114657/0)

Nayak, D.R., Miller, D., Nolan, A., Smith, P. and Smith, J.U., 2010, Calculating carbon budgets of wind farms on Scottish peatland. Mires and Peat 4: Art. 9. Online. (<u>http://mires-and-peat.net/pages/volumes/map04/map0409.php)</u>

Scottish Peat Resources and their Energy Potential. ETSU B 1204. London: Department of Energy. Birnie R.V., Clayton P., Griffiths P., Hulme P.D., Robertson, R.A., Sloane B.D., and S.A. Ward. (1991).

Peatbogs and Carbon: A Critical Synthesis Lindsey, R. (2010) for RSPB Scotland.

Scottish Natural Heritage (SNH), SEPA, Scottish Government & The James Hutton Institute. (2014). Peat Survey Guidance; Developments on Peatland: Site Surveys.

http://www.gov.scot/Topics/Business-Industry/Energy/Energy-sources/19185/17852-1/CSavings/PSG2011

Scottish Renewables & SEPA. (2012). Developments on Peatland Guidance on the Assessment of Peat Volumes, Reuse of Excavated Peat and the Minimisation of Waste. http://www.scottishrenewables.com/static/uploads/publications/a4_developments_on_peatland.pdf

Scottish Government. 2020. Update to the Climate Change Plan 2018 – 2032 Securing a Green Recovery on a Path to Net Zero. Available at

https://www.gov.scot/binaries/content/documents/govscot/publications/strategyplan/2020/12/securing-green-recovery-path-net-zero-update-climate-change-plan-20182032/documents/update-climate-change-plan-2018-2032-securing-green-recoverypath-net-zero/update-climate-change-plan-2018-2032-securing-green-recovery-path-netzero/govscot%3Adocument/update-climate-change-plan-2018-2032-securing-greenrecovery-path-net-zero.pdf

Annex 9.4A

Technical Appendix 9.4: Carbon Balance Assessment

Ben Sca Redesign Wind Farm

Ben Sca Wind Farm Limited

SLR Project No.: 405.064982.00001

14 March 2024

Carbon Calculator v1.8.1 Ben Sca Redesign Wind Farm Location: 57.450016 -6.455144 Ben Sca Wind Farm Ltd.

Core input data

Input data	Expected value	Minimum value	Maximum value	Source of data
Windfarm characteristics				
<u>Dimensions</u>				
No. of turbines	9	9	9	EIAR Chapter 1: Introduction and Project Description
Duration of consent (years)	40	40	40	EIAR Chapter 1: Introduction and Project Description
<u>Performance</u>				
Power rating of 1 turbine (MW)	4.53	4.53	4.53	EIAR Chapter 1: Introduction and Project Description
Capacity factor	40.6	39.8	41.4	EIAR Chapter 1: Introduction and Project Description
<u>Backup</u>				
Fraction of output to backup (%)	5	5	5	Dale et al 2004
Additional emissions due to	10	4.0	10	
reduced thermal efficiency of	10	10	10	Fixed
Total CO2 emission from				
turbing life $(tCO2 MW^{-1})$ (or	Calculate	Calculate	Calculate wrt	
manufacture construction	wrt installed	wrt installed	installed	
decommissioning)	capacity	capacity	capacity	
Characteristics of peatland befo	re windfarm d	evelopment		
Type of peatland	Acid bog	Acid bog	Acid bog	ES Chapter 8
Average annual air	5	4	6	Met Office data
temperature at site (°C)	5	-	0	
Average depth of peat at site (m)	0.68	0.6799	0.68001	EIAR Chapter 6: Hydrology, Hydrogeology and Soils
C Content of dry peat (% by weight)	55	49	62	Birnie et al. 1991
Average extent of drainage around drainage features at site (m)	5	4	6	Conservative values estimated by Hydrologist
Average water table depth at site (m)	0.2	0.1	0.3	Conservative values estimated by Hydrologist
Dry soil bulk density (g cm ⁻³)	0.2	0.18	0.22	Default value taken from Lilly et al., 2010
Characteristics of bog plants				
Time required for regeneration				Suggested acceptable literature values
of bog plants after restoration (years)	10	5	15	from carbon calculator protocol.
Carbon accumulation due to C				
fixation by bog plants in	0.25	0.12	0.31	Default values provided by Nayak et al.
undrained peats (tC ha ⁻¹ yr ⁻¹)				
Forestry Plantation Characterist	ics			
Area of forestry plantation to be felled (ha)	64.73	64	65	EIAR Chapter 1: Introduction and Project Description
Average rate of carbon				Figures from Cannell 1999 min and may
sequestration in timber (tC ha ⁻ ¹ yr ⁻¹)	3.6	3.4	3.8	entered as a range.
Counterfactual emission factors				

Input data	Expected value	Minimum value	Maximum value	Source of data
Coal-fired plant emission factor				
(t CO2 MWh ⁻¹) Grid-mix emission factor (t CO2	0.945	0.945	0.945	
MWh ⁻¹)	0.207	0.207	0.207	
Fossil fuel-mix emission factor	0.424	0.424	0.424	
(t CO2 MWh ⁻¹)				
Borrow pits				
Number of borrow pits	3	3	3	EIAR Chapter 1: Introduction and Project Description
Average length of pits (m)	83.33	83.33	83.33	EIAR Chapter 1: Introduction and Project Description
Average width of pits (m)	63.33	63.33	63.33	EIAR Chapter 1: Introduction and Project Description
Average depth of peat removed from pit (m)	0.5	0.5	0.5	EIAR Chapter 6: Hydrology, Hydrogeology and Soils
Access tracks				
Total length of access track (m)	6293	6270	6310	EIAR Chapter 1: Introduction and Project Description
Existing track length (m)	1784	1780	1790	EIAR Chapter 1: Introduction and Project Description
<u>Length of access track that is</u> <u>floating road (m)</u>	167	160	170	EIAR Chapter 1: Introduction and Project Description
Floating road width (m)	7	7	7	EIAR Chapter 1: Introduction and Project Description
Floating road depth (m)	0	0	0	EIAR Chapter 1: Introduction and Project Description
Length of floating road that is drained (m)	167	160	170	EIAR Chapter 1: Introduction and Project Description
Average depth of drains associated with floating roads (m)	0.3	0.3	0.3	EIAR Chapter 1: Introduction and Project Description
Length of access track that is excavated road (m)	4342	4330	4350	EIAR Chapter 1: Introduction and Project Description
Excavated road width (m)	5	5	5	EIAR Chapter 1: Introduction and Project Description
Average depth of peat excavated for road (m)	0.6	0.6	0.6	EIAR Chapter 6: Hydrology, Hydrogeology and Soils
<u>Length of access track that is</u> <u>rock filled road (m)</u>	0	0	0	N/A
Rock filled road width (m)	5	5	5	N/A
Rock filled road depth (m)	0	0	0	N/A
Length of rock filled road that is drained (m)	0	0	0	N/A
Average depth of drains associated with rock filled roads (m)	1	1	1	N/A
Cable trenches				
Length of any cable trench on				
peat that does not follow		•	•	
access tracks and is lined with a permeable medium (eg. sand) (m)	0	0	0	N/A
Average depth of peat cut for cable trenches (m)	0	0	0	N/A
Additional peat excavated (not a	Iready account	ted for above)		
Volume of additional peat	account			FIAR Chapter 6: Hydrology Hydrogeology
excavated (m ³)	7596	7500	7600	and Soils

Reference: MN3C-23RM-QLN1 v18

14/03/2024, 14:26

14/03/2024, 14:26

Reference: MN3C-23RM-QLN1 v18

Input data	Expected value	Minimum value	Maximum value	Source of data
Area of additional peat	44400	44400	44500	EIAR Chapter 6: Hydrology, Hydrogeology
excavated (m ²)	11408	11400	11500	and Soils
Peat Landslide Hazard				
Peat Landslide Hazard and Risk				
Assessments: Best Practice				
Guide for Proposed Electricity	negligible	negligible	negligible	Fixed
Generation Developments				
Improvement of C sequestratior	n at site by blo	cking drains, re	estoration of ha	bitat etc
Improvement of degraded bog				
Area of degraded bog to be	0	0	0	N1/A
improved (ha)	0	0	0	N/A
Water table depth in degraded	0	0	0	N1/A
bog before improvement (m)	0	0	0	N/A
Water table depth in degraded	0	0	0	Ν/Δ
bog after improvement (m)	0	0	0	
Time required for hydrology				
and habitat of bog to return to	2	2	2	N/A
its previous state on	2	2	2	
improvement (years)				
Period of time when				
effectiveness of the	2	2	2	N/A
improvement in degraded bog				
can be guaranteed (years)				
Improvement of felled				
Area of follod plantation to be				Chapter 1: Introduction and Project
improved (ba)	64.73	64	65	descriptions
Water table depth in felled				descriptions
area before improvement (m)	0.2	0.19	0.21	Conservative estimate
Water table depth in felled				
area after improvement (m)	0.1	0.09	0.11	Conservative estimate
Time required for hydrology				
and habitat of felled plantation		_		
to return to its previous state	7.5	5	10	Conservative estimate
on improvement (years)				
Period of time when				
effectiveness of the				
improvement in felled	40	40	40	Conservative estimate
plantation can be guaranteed				
(years)				
<u>Restoration of peat removed</u>				
from borrow pits				
Area of borrow pits to be	1.56	1.55	1.57	Chapter 1: Introduction and Project
restored (ha)				descriptions
Depth of water table in borrow				
pit before restoration with	0.1	0.05	0.15	Assumed to be equal to the average water
respect to the restored surface				table depth across the site.
(III) Dopth of water table in barrow				
pit after restoration with				After, restoration of the peat into the
respect to the restored surface	0.05	0	0.1	borrow-pits, the aim would be to restore
(m)				the water table to an optimum 0.1m.
1/				

14/03/2024, 14:26

Reference: MN3C-23RM-QLN1 v18

Input data	Expected value	Minimum value	Maximum value	Source of data
Time required for hydrology and habitat of borrow pit to return to its previous state on restoration (years)	7.5	5	10	For successful restoration of blanket bog, the supporting hydrology must return reasonably quickly and it would be expected that if the hydrological restoration is successful the hydrology and habitat would be restored c. 5-7 years post development.
Period of time when effectiveness of the restoration of peat removed from borrow pits can be guaranteed (years)	40	40	40	The guidance within the carbon calculator states that unless there strong supporting evidence that restoration of the borrow- pits can be guaranteed beyond the lifetime of the wind farm, this parameter should be set as the lifetime of the wind farm.
<u>foundations and hardstanding</u> Water table depth around foundations and hardstanding before restoration (m) Water table depth around	0.3	0.29	0.31	Conservative estimate
foundations and hardstanding after restoration (m)	0.2	0.19	0.21	Conservative estimate
Time to completion of backfilling, removal of any surface drains, and full restoration of the hydrology (years)	5	5	5	For successful restoration of blanket bog, the supporting hydrology must return reasonably quickly and it would be expected that if the hydrological restoration is successful the hydrology and habitat would be restored c. 5-7 years post development.
Restoration of site after decomis	sioning			
Will the hydrology of the site be restored on decommissioning?	Yes	Yes	Yes	
Will you attempt to block any gullies that have formed due to the windfarm?	Yes	Yes	Yes	Chapter 1: Introduction and Project descriptions
Will you attempt to block all artificial ditches and facilitate rewetting?	Yes	Yes	Yes	Chapter 1: Introduction and Project descriptions
Will the habitat of the site be restored on decommissioning?	No	No	No	
Will you control grazing on degraded areas?	No	No	No	Chapter 1: Introduction and Project descriptions
Will you manage areas to favour reintroduction of species	Yes	Yes	Yes	Chapter 1: Introduction and Project descriptions
Methodology				

Choice of methodology for calculating emission factors

Site specific (required for planning applications)

Forestry input data

N/A

Construction input data

Input data	Expected value	Minimum value	Maximum value	Source of data
Area 1.1				
Number of turbines in this area	9	9	9	EIAR Chapter 1: Introduction and Project Description
Turbine foundations				
Depth of hole dug when constructing foundations (m)	0.58	0.58	0.58	EIAR Chapter 6: Hydrology, Hydrogeology and Soils
Aproximate geometric shape of whole dug when constructing foundations	Circular	Circular	Circular	EIAR Chapter 1: Introduction and Project Description
Diameter at bottom	23	23	23	
Diameter at surface	23	23	23	
Hardstanding				
Depth of hole dug when constructing hardstanding (m)	0.58	0.58	0.58	EIAR Chapter 6: Hydrology, Hydrogeology and Soils
Aproximate geometric shape of whole dug when constructing hardstanding	Rectangular	Rectangular	Rectangular	EIAR Chapter 1: Introduction and Project Description
Length at surface	72	72	72	
Width at surface	30	30	30	
Length at bottom	70	70	70	
Width at bottom	28	28	28	
Piling				
Is piling used?	No	No	No	EIAR Chapter 1: Introduction and Project Description
Volume of Concrete				
Volume of concrete used (m ³) in the entire area	3150	3150	3150	EIAR Chapter 1: Introduction and Project Description

Payback Time and CO₂ emissions • MN3C-23RM-QLN1 v18

	· · · · · · · · · · · · · · · · · · ·	<u>i</u>	(
1. Windfarm CO2 emission saving over	Exp.	Min.	Max.
coal-fired electricity generation (t CO2 / yr)	137,026	134,326	139,726
grid-mix of electricity generation (t CO2 / yr)	30,015	29,424	30,607
fossil fuel-mix of electricity generation (t CO2 / yr)	61,480	60,269	62,692
Energy output from windfarm over lifetime (MWh)	5,800,038	5,685,752	5,914,325

Total CO2 losses due to wind farm (tCO2 eq.)	Exp.	Min.	Max.
2. Losses due to turbine life (eg. manufacture, construction, decomissioning)	34,881	34,881	34,881
3. Losses due to backup	30,286	30,286	30,286
4. Lossess due to reduced carbon fixing potential	636	248	953
5. Losses from soil organic matter	15,155	10,217	20,036
6. Losses due to DOC & POC leaching	128	30	247
7. Losses due to felling forestry	34,178	31,915	36,227
Total losses of carbon dioxide	115,263	107,577	122,629

8. Total CO2 gains due to improvement of site (t CO2 eq.)	Exp.	Min.	Max.
8a. Change in emissions due to improvement of degraded bogs	0	0	0
8b. Change in emissions due to improvement of felled forestry	-6,206	-4,793	-7,659
8c. Change in emissions due to restoration of peat from borrow pits	113	0	178
8d. Change in emissions due to removal of drainage from foundations & hardstanding	-328	-234	-437
Total change in emissions due to improvements	-6,421	-5,027	-7,918

RESULTS	Exp.	Min.	Max.
Net emissions of carbon dioxide (t CO2 eq.)	108,842	99,658	117,602
Carbon Payback Time			
coal-fired electricity generation (years)	0.8	0.7	0.9
grid-mix of electricity generation (years)	3.6	3.3	4.0
fossil fuel-mix of electricity generation (years)	1.8	1.6	2.0
Ratio of soil carbon loss to gain by restoration (not used in Scottish applications)	2.38	1.29	4.03
Ratio of CO2 eq. emissions to power generation (g/kWh) (for info. only)	18.77	16.85	20.68

Making Sustainability Happen